On Flexible Quadratic Algebras
نویسنده
چکیده
Let R be a ring. A construction method for flexible quadratic algebras with scalar involution over R is presented which unifies various classical constructions in the literature, in particular those to construct composition algebras.
منابع مشابه
Identities for Algebras Obtained from the Cayley-dickson Process
The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 for all n 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenio...
متن کاملNonassociative Algebras with Submultiplicative Bilinear Form
In this paper algebras with identity, over ordered fields, which possess a (weak) submultiplicative positive bilinear form are studied. They are called (weak) subdecomposition algebras. It is proved that every weak subdecomposition algebra is a simple quadratic algebra with no nontrivial nilpotents or idempotents. If a weak subdecomposition algebra is also flexible, then it is a noncommutative ...
متن کاملQuadratic Division Algebras Revisited ( Remarks On
In his remarkable article “Quadratic division algebras” (Trans. Amer. Math. Soc. 105 (1962), 202–221), J. M. Osborn claims to solve ‘the problem of determining all quadratic division algebras of order 4 over an arbitrary field F of characteristic not two . . . modulo the theory of quadratic forms over F ’ (cf. p. 206). While we shall explain in which respect he has not achieved this goal, we sh...
متن کاملQuadratic Algebras Related to The
We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bihamiltonian operad.
متن کاملQuadratic Algebras Related to the Bihamiltonian
We prove the conjectures on dimensions and characters of some quadratic algebras stated by B.L.Feigin. It turns out that these algebras are naturally isomorphic to the duals of the components of the bihamiltonian operad.
متن کامل